

LISBOA

UNIVERSIDADE CATOLICA PORTUGUESA

Mathematics

preparing students for exams

Ana Barqueira june 5, 2023

Integrated Masters in Medicine Model Exam | Access for International Students | 2023/2024 1. For the menu of a graduation dinner, we must choose between two soups, four main dishes and six desserts. How many are the choices of a menu with one soup, one main dish and one dessert?

To compute all the possible menus with 1 soup, one main dissh and one dessert, we only have to do

ATOLICA

LISBO

ADE DE MEDICINA

Answer: 48 (b)

2. Consider X the random variable "number of times you go shopping per month". The following table corresponds to the probability distribution of variable X:

X = x i	0	1	2	3	4
P(X = xi)	2k	0,26	0,2	0,15	k/2

The value of P(X=0) is:

We should start by compute the value of K.

To do this, we use the property that says: the sum of values of a probabiliy function is equal to 1

$$2k + 0,26 + 0,2 + 0,15 + k/2 = 3$$

 $5k/2 + 0,61 = 1$
 $5k/2 = 1-0,61$
 $5k/2 = 0,39$
 $5K = 0,39x2$
 $K = (0,39x2)/5$
 $K = 0,156$
Then, P(X=0) = $2k = 2x0,156 = 0,312$

Answer: 0,312 (d)

3. It is known that: P(AUB) = 0.68, P(B) = 0.42 e P(A) = 0.5. Calculate P(A|B).

We know that, $P(AUB) = P(A) + P(B) - P(A \cap B)$ $P(A|B) = P(A \cap B)/P(B)$

- Compute P(AΩB)
 0,68 = 0,5 + 0,42 P(AΩB)
 P(AΩB) = 0,5 + 0,42 0,68 = 0,24
- 2. Compute P(A|B) P(A|B) = 0,24/0,42 = 0,571

- the number of students speaking French is equal to the number of students speaking Spanish;
- the number of students speaking one of the languages is three times the number of students speaking French and Spanish.

If you randomly choose a student from this school, what is the probability that this student will speak Spanish, knowing that he or she speaks French?

Let **F** = "student speaking French" and **S** = "student speaking Spanish".

$$\begin{split} \mathsf{P}(\mathsf{F}) &= \mathsf{P}(\mathsf{S}) \\ \mathsf{P}(\mathsf{S}\backslash\mathsf{F}) &+ \mathsf{P}(\mathsf{F}\backslash\mathsf{S}) &= 3\mathsf{P}(\mathsf{F}\cap\mathsf{S}) \Leftrightarrow \mathsf{P}(\mathsf{S}) - \mathsf{P}(\mathsf{F}\cap\mathsf{S}) + \mathsf{P}(\mathsf{F}) - \mathsf{P}(\mathsf{F}\cap\mathsf{S}) &= 3(\mathsf{F}\cap\mathsf{S}) \Leftrightarrow \mathsf{P}(\mathsf{F}) \\ \Leftrightarrow \mathsf{P}(\mathsf{S}) &+ \mathsf{P}(\mathsf{F}) - 2\mathsf{P}(\mathsf{F}\cap\mathsf{S}) &= 3(\mathsf{F}\cap\mathsf{S}) \Leftrightarrow \mathsf{P}(\mathsf{S}) + \mathsf{P}(\mathsf{F}) = 5\mathsf{P}(\mathsf{F}\cap\mathsf{S}) \Leftrightarrow 2\mathsf{P}(\mathsf{F}) = 5\mathsf{P}(\mathsf{F}\cap\mathsf{S}) \Leftrightarrow \mathsf{P}(\mathsf{F}) = 5/2\mathsf{P}(\mathsf{F}\cap\mathsf{S}). \end{split}$$

We want to calculate P(S|F) and by definition,

 $P(S | F) = \frac{P(F \cap S)}{P(F)} = \frac{P(F \cap S)}{5/2P(F \cap S)} = 2/5.$

Answer: 2/5

5. If α is an angle of an equilateral triangle, the value of the expression $tg(\alpha)cos^2(\alpha)+tg(\alpha)sen^2(\alpha)$, is:

We know that all the angles of an equilateral triangle have amplitude equal to 60°, so $\alpha = 60^{\circ}$.

We can write the expression $tg(\alpha)cos^2(\alpha)+tg(\alpha)sen^2(\alpha)$ in an equivalent form that is,

 $tg(\alpha)cos^{2}(\alpha)+tg(\alpha)sen^{2}(\alpha) = tg(\alpha)(cos^{2}(\alpha)+sen^{2}(\alpha)) = tg(\alpha)x1 = tg(\alpha)$

So, as $\alpha = 60^\circ$, we have that tg(60°) = $\sqrt{3}$

So, the value of tg(α)cos²(α)+tg(α)sen²(α) = $\sqrt{3}$

Answer: $\sqrt{3}$ (b)

FACULDADE DE MEDICI

6. The equation $x^2 + 6x + y^2 - 2y = 15$ represents a circle. What are the coordinates of its centre?

We know that the equation of a circle is $(x - c_1)^2 + (x - c_2)^2 = r^2$

We can rewrite the equation to form the expression of the square of the binomial for *x* and for *y*, like

$$(x^{2}+6x+9) + (y^{2}-2y+1) = 15+9+1 \Leftrightarrow$$

 $(x+3)^2 + (y-1)^2 = 25.$

The expression above is the equation of a circle of centre (-3,1) and radius equal to 5.

Answer: C = (-3,1)

7. Let t be a line whose slope is m = 2/5. Knowing that the line s is perpendicular to the line t, its slope is:

We know that if we have a line with slope m, then a line perpendicular to it have slope -1/m.

The slope of line t is 2/5.

E MEDICINA

If the line s is perpendicular to line t, it slope, applying the property above is -5/2

Answer: -5/2 (d)

8. Simplify the expression $w = \frac{3(2+i)}{(4-i)(4+i)}$, applying mathematical operations to complex numbers.

$$\mathbf{W} = \frac{3(2+i)}{(4-i)(4+i)} = \frac{3(2+i)}{16-i^2} = \frac{3(2+i)}{16+1} = \frac{6+3i}{17}$$

Answer:
$$w = \frac{6+3i}{17}$$

CATOLICA

ADE DE MEDICINA

9. One of the solutions of the equation $x^2 - 4x + 8 = 0$ is:

We use the resolving formula to solve the equation $x^2 - 4x + 8 = 0$

$$x = \frac{4 \pm \sqrt{16 - 4 \times 1 \times 8}}{2 \times 1} \iff x = \frac{4 \pm \sqrt{16 - 4 \times 1 \times 8}}{2} \iff x = \frac{4 \pm \sqrt{-16}}{2} \iff x = \frac{4 \pm \sqrt{16i^2}}{2} \iff x = \frac{4 \pm 4i}{2}$$

 \Leftrightarrow x = 2 $\pm 2i$

CATOLICA

DE MEDICINA

Answer: 2 + 2*i* (*c*)

CATOLICA

LISBOA

FACULDADE DE MEDICINA

$$z = 7e^{i(\frac{\pi}{4})} = 7\cos(\frac{\pi}{4}) + 7\sin(\frac{\pi}{4})i = \frac{7\sqrt{2}}{2} + \frac{7\sqrt{2}}{2}i$$

Answer:
$$z = \frac{7\sqrt{2}}{2} + \frac{7\sqrt{2}}{2}i$$

11. The value of the expression
$$2sen\left(rac{\pi}{3}
ight)+3tg\left(rac{\pi}{6}
ight)+2cos\left(rac{\pi}{4}
ight)+sen(\pi)$$
 is:

$$sen\left(\frac{\pi}{3}\right) = \sqrt{3}/2$$
$$tg\left(\frac{\pi}{6}\right) = \sqrt{3}/3$$
$$cos\left(\frac{\pi}{4}\right) = \sqrt{2}/2$$
$$sen(\pi) = 0$$

FACULDADE DE MEDICINA

LISBOA

So,
$$2sen\left(\frac{\pi}{3}\right) + 3tg\left(\frac{\pi}{6}\right) + 2cos\left(\frac{\pi}{4}\right) + sen(\pi) = 2x\sqrt{3}/2 + 3x\sqrt{3}/3 + 2x\sqrt{2}/2 + 0 = 2\sqrt{3} + \sqrt{2}$$

Answer: $2\sqrt{3} + \sqrt{2}$ (c)

$$x^2 - 4 = 0 \Leftrightarrow x^2 = 4 \Leftrightarrow x = \pm \sqrt{4} \Leftrightarrow x = \pm 2$$

1 + 3x = 0 \le x = -1/3

 $x \in]-2, -1/3, [\cup]2, +\infty[$

CATÓLICA

LISBO

ADE DE MEDICINA

Answer: *x* ∈] − 2, −1/3, [U]2, +∞[

13. Consider the function
$$f(x) = \frac{3x-4}{x-5}$$
 in \mathbb{R} . Indicate all asymptotes of the function $f(x)$.

If we devide the numerator by the denominatour of f(x) we have

 $(3x - 4)/(x-5) = 3 + \frac{11}{x-5}$

MEDICINA

So, the function has a vertical asymptote at x = 5 and a horizontal asymptote at y = 3

Answer: x = 5, y = 3

14. The point corresponding to the maximiser of the function $f(x) = -24x + 3\ln(x)$ is:

To compute the maximising point of function f we have to calculate the first derivative and compute its zeros.

 $\begin{aligned} f'(x) &= -24 + 3/x \\ f'(x) &= -24 + 3/x = 0 \iff -24x + 3 = 0 \land x \neq 0 \iff x = 3/24 \land x \neq 0 \iff x = 1/8 \land x \neq 0 \end{aligned}$

To confirm that 1/8 is a maximiser of function f we have to compute the second derivative of function f and verify that its value is always negative.

$$f''(x) = \frac{-3}{x^2} < 0$$

Answer: $x = \frac{1}{8}$ (*a*)

15. Calculate the value of the second derivative of the function $f(x) = 4x^3 - 3\ln(x)$ at the point x=3.

 $f'(x) = 12x^2 - \frac{3}{x}$ $f''(x) = 24x + \frac{3}{x^2}$

CATOLICA

LISBO

ADE DE MEDICINA

$$f''(3) = 24x3 + 3/9 = 217/3$$

Answer: $x = \frac{217}{3}$

16. Consider the following function of domain \mathbb{R}^+ : g(x) = -5. $ln(x^2)$. The 1st derivative of the function $h(x) = [g(x)^2]$:

h'(x) = 2.g(x).g'(x) $h'(x) = 2(-5. ln(x^2)).(-5. ln(x^2))'$ $h'(x) = -10 \ln(x^2) \cdot (-5 \frac{2x}{x^2})$ $h'(x) = 50 \ln(x^2) \cdot \left(\frac{2}{x}\right) = \frac{100}{x} \ln(x^2)$ If $x \in (0,1[,\frac{100}{r}\ln(x^2) < 0$ If $x \in]1, +\infty[, \frac{100}{x}\ln(x^2) > 0]$

CATOLICA

Answer: It is positive or negative (a)

17. Consider the function: $p(x) = 10x^2 - e^{3x}$. The abscissa of the inflection point of this function is:

To compute the inflection point of a function we have to calculate the second derivative and equal the second derivative to zero.

 $p'(x) = 20x - 3e^{3x}$ $p''(x) = 20 - 9e^{3x}$

DE MEDICINA

$$p''(x) = 20 - 9e^{3x} = 0 \Leftrightarrow 9e^{3x} = 20 \Leftrightarrow e^{3x} = \frac{20}{9} \Leftrightarrow 3x = \ln(\frac{20}{9}) \Leftrightarrow x = \ln(\frac{20}{9})/3$$

$$-\infty \ln(\frac{20}{9})/3 + \infty$$

 $20 - 9e^{3x} + 0 - p(x) U I.P. \Omega$

Answer:
$$x = \ln(\frac{20}{9})/3$$
 (b)

18. Calculate the value of the following limits.

a)
$$\lim_{x \to 0} \frac{2x}{e^{3x} - 1}$$
 b) $\lim_{x \to 0} \frac{sen4x}{5x}$

$$\lim_{x \to 0} \frac{2x}{e^{3x} - 1} = \lim_{x \to 0} \left(\frac{e^{3x} - 1}{2x}\right)^{-1} = \frac{2}{3} \lim_{x \to 0} \left(\frac{e^{3x} - 1}{3x}\right)^{-1} = \frac{2}{3} \times 1^{-1} = \frac{2}{3}$$

$$\lim_{x \to 0} \frac{sen(4x)}{5x} = \frac{1}{5} \lim_{x \to 0} \left(\frac{sen(4x)}{x}\right) = \frac{4}{5} \lim_{x \to 0} \left(\frac{sen(4x)}{4x}\right) = \frac{4}{5} \times 1 = \frac{4}{5}$$

Answer:
$$\lim_{x \to 0} \frac{2x}{e^{3x} - 1} = 2/3$$
 $\lim_{x \to 0} \frac{sen(4x)}{5x} = 4/5$

19. Let f(x) be a function of domain \mathbb{R}^+ . It is known that $\lim_{x \to +\infty} \frac{x}{f(x)} = 3$ and $\lim_{x \to +\infty} [f(x) - \frac{1}{3}x] = 4$. The equation that defines an asymptote of the graph of the function f(x) is:

If
$$\lim_{x \to +\infty} \frac{x}{f(x)} = 3$$
, the slope (m) of an oblique asymptote is 1/3 $\left(\lim_{x \to +\infty} \frac{f(x)}{x} = \frac{1}{3}\right)$

If $\lim_{x \to +\infty} [f(x) - \frac{1}{3}x] = 4$, the value of term independent (b) of an oblique asymptote is 4.

So, the oblique asymptote of function f is $y = mx + b = \frac{1}{3}x + 4$

Answer:
$$y = \frac{1}{3}x + 4$$
 (c)

$$\frac{1}{27^{(x-5)}} - 3^{(x+4)} = 0 \Leftrightarrow \frac{1}{27^{(x-5)}} = 3^{(x+4)} \Leftrightarrow \frac{1}{3^{3(x-5)}} = 3^{(x+4)} \Leftrightarrow 3^{-3(x-5)} = 3^{(x+4)} \Leftrightarrow -3(x-5) = (x+4)$$
$$-3x + 15 = x + 4 \Leftrightarrow -4x = -11 \Leftrightarrow x = 11/4$$

Answer: x = 11/4

CATOLICA

LISBO

ADE DE MEDICINA